Serre's theorem on a semisimple Lie algebra

In abstract algebra, specifically the theory of Lie algebras, Serre's theorem states: given a (finite reduced) root system Φ {\displaystyle \Phi } , there exists a finite-dimensional semisimple Lie algebra whose root system is the given Φ {\displaystyle \Phi } .

Statement

The theorem states that: given a root system Φ {\displaystyle \Phi } in a Euclidean space with an inner product ( , ) {\displaystyle (,)} , β , α = 2 ( α , β ) / ( α , α ) , β , α E {\displaystyle \langle \beta ,\alpha \rangle =2(\alpha ,\beta )/(\alpha ,\alpha ),\beta ,\alpha \in E} and a base { α 1 , , α n } {\displaystyle \{\alpha _{1},\dots ,\alpha _{n}\}} of Φ {\displaystyle \Phi } , the Lie algebra g {\displaystyle {\mathfrak {g}}} defined by (1) 3 n {\displaystyle 3n} generators e i , f i , h i {\displaystyle e_{i},f_{i},h_{i}} and (2) the relations

[ h i , h j ] = 0 , {\displaystyle [h_{i},h_{j}]=0,}
[ e i , f i ] = h i , [ e i , f j ] = 0 , i j {\displaystyle [e_{i},f_{i}]=h_{i},\,[e_{i},f_{j}]=0,i\neq j} ,
[ h i , e j ] = α i , α j e j , [ h i , f j ] = α i , α j f j {\displaystyle [h_{i},e_{j}]=\langle \alpha _{i},\alpha _{j}\rangle e_{j},\,[h_{i},f_{j}]=-\langle \alpha _{i},\alpha _{j}\rangle f_{j}} ,
ad ( e i ) α i , α j + 1 ( e j ) = 0 , i j {\displaystyle \operatorname {ad} (e_{i})^{-\langle \alpha _{i},\alpha _{j}\rangle +1}(e_{j})=0,i\neq j} ,
ad ( f i ) α i , α j + 1 ( f j ) = 0 , i j {\displaystyle \operatorname {ad} (f_{i})^{-\langle \alpha _{i},\alpha _{j}\rangle +1}(f_{j})=0,i\neq j} .

is a finite-dimensional semisimple Lie algebra with the Cartan subalgebra generated by h i {\displaystyle h_{i}} 's and with the root system Φ {\displaystyle \Phi } .

The square matrix [ α i , α j ] 1 i , j n {\displaystyle [\langle \alpha _{i},\alpha _{j}\rangle ]_{1\leq i,j\leq n}} is called the Cartan matrix. Thus, with this notion, the theorem states that, give a Cartan matrix A, there exists a unique (up to an isomorphism) finite-dimensional semisimple Lie algebra g ( A ) {\displaystyle {\mathfrak {g}}(A)} associated to A {\displaystyle A} . The construction of a semisimple Lie algebra from a Cartan matrix can be generalized by weakening the definition of a Cartan matrix. The (generally infinite-dimensional) Lie algebra associated to a generalized Cartan matrix is called a Kac–Moody algebra.

Sketch of proof

The proof here is taken from (Serre 1966, Ch. VI, Appendix.) and (Kac 1990, Theorem 1.2.). Let a i j = α i , α j {\displaystyle a_{ij}=\langle \alpha _{i},\alpha _{j}\rangle } and then let g ~ {\displaystyle {\widetilde {\mathfrak {g}}}} be the Lie algebra generated by (1) the generators e i , f i , h i {\displaystyle e_{i},f_{i},h_{i}} and (2) the relations:

  • [ h i , h j ] = 0 {\displaystyle [h_{i},h_{j}]=0} ,
  • [ e i , f i ] = h i {\displaystyle [e_{i},f_{i}]=h_{i}} , [ e i , f j ] = 0 , i j {\displaystyle [e_{i},f_{j}]=0,i\neq j} ,
  • [ h i , e j ] = a i j e j , [ h i , f j ] = a i j f j {\displaystyle [h_{i},e_{j}]=a_{ij}e_{j},[h_{i},f_{j}]=-a_{ij}f_{j}} .

Let h {\displaystyle {\mathfrak {h}}} be the free vector space spanned by h i {\displaystyle h_{i}} , V the free vector space with a basis v 1 , , v n {\displaystyle v_{1},\dots ,v_{n}} and T = l = 0 V l {\textstyle T=\bigoplus _{l=0}^{\infty }V^{\otimes l}} the tensor algebra over it. Consider the following representation of a Lie algebra:

π : g ~ g l ( T ) {\displaystyle \pi :{\widetilde {\mathfrak {g}}}\to {\mathfrak {gl}}(T)}

given by: for a T , h h , λ h {\displaystyle a\in T,h\in {\mathfrak {h}},\lambda \in {\mathfrak {h}}^{*}} ,

  • π ( f i ) a = v i a , {\displaystyle \pi (f_{i})a=v_{i}\otimes a,}
  • π ( h ) 1 = λ , h 1 , π ( h ) ( v j a ) = α j , h v j a + v j π ( h ) a {\displaystyle \pi (h)1=\langle \lambda ,\,h\rangle 1,\pi (h)(v_{j}\otimes a)=-\langle \alpha _{j},h\rangle v_{j}\otimes a+v_{j}\otimes \pi (h)a} , inductively,
  • π ( e i ) 1 = 0 , π ( e i ) ( v j a ) = δ i j α i ( a ) + v j π ( e i ) a {\displaystyle \pi (e_{i})1=0,\,\pi (e_{i})(v_{j}\otimes a)=\delta _{ij}\alpha _{i}(a)+v_{j}\otimes \pi (e_{i})a} , inductively.

It is not trivial that this is indeed a well-defined representation and that has to be checked by hand. From this representation, one deduces the following properties: let n ~ + {\displaystyle {\widetilde {\mathfrak {n}}}_{+}} (resp. n ~ {\displaystyle {\widetilde {\mathfrak {n}}}_{-}} ) the subalgebras of g ~ {\displaystyle {\widetilde {\mathfrak {g}}}} generated by the e i {\displaystyle e_{i}} 's (resp. the f i {\displaystyle f_{i}} 's).

  • n ~ + {\displaystyle {\widetilde {\mathfrak {n}}}_{+}} (resp. n ~ {\displaystyle {\widetilde {\mathfrak {n}}}_{-}} ) is a free Lie algebra generated by the e i {\displaystyle e_{i}} 's (resp. the f i {\displaystyle f_{i}} 's).
  • As a vector space, g ~ = n ~ + h n ~ {\displaystyle {\widetilde {\mathfrak {g}}}={\widetilde {\mathfrak {n}}}_{+}\bigoplus {\mathfrak {h}}\bigoplus {\widetilde {\mathfrak {n}}}_{-}} .
  • n ~ + = 0 α Q + g ~ α {\displaystyle {\widetilde {\mathfrak {n}}}_{+}=\bigoplus _{0\neq \alpha \in Q_{+}}{\widetilde {\mathfrak {g}}}_{\alpha }} where g ~ α = { x g ~ | [ h , x ] = α ( h ) x , h h } {\displaystyle {\widetilde {\mathfrak {g}}}_{\alpha }=\{x\in {\widetilde {\mathfrak {g}}}|[h,x]=\alpha (h)x,h\in {\mathfrak {h}}\}} and, similarly, n ~ = 0 α Q + g ~ α {\displaystyle {\widetilde {\mathfrak {n}}}_{-}=\bigoplus _{0\neq \alpha \in Q_{+}}{\widetilde {\mathfrak {g}}}_{-\alpha }} .
  • (root space decomposition) g ~ = ( 0 α Q + g ~ α ) h ( 0 α Q + g ~ α ) {\displaystyle {\widetilde {\mathfrak {g}}}=\left(\bigoplus _{0\neq \alpha \in Q_{+}}{\widetilde {\mathfrak {g}}}_{-\alpha }\right)\bigoplus {\mathfrak {h}}\bigoplus \left(\bigoplus _{0\neq \alpha \in Q_{+}}{\widetilde {\mathfrak {g}}}_{\alpha }\right)} .

For each ideal i {\displaystyle {\mathfrak {i}}} of g ~ {\displaystyle {\widetilde {\mathfrak {g}}}} , one can easily show that i {\displaystyle {\mathfrak {i}}} is homogeneous with respect to the grading given by the root space decomposition; i.e., i = α ( g ~ α i ) {\displaystyle {\mathfrak {i}}=\bigoplus _{\alpha }({\widetilde {\mathfrak {g}}}_{\alpha }\cap {\mathfrak {i}})} . It follows that the sum of ideals intersecting h {\displaystyle {\mathfrak {h}}} trivially, it itself intersects h {\displaystyle {\mathfrak {h}}} trivially. Let r {\displaystyle {\mathfrak {r}}} be the sum of all ideals intersecting h {\displaystyle {\mathfrak {h}}} trivially. Then there is a vector space decomposition: r = ( r n ~ ) ( r n ~ + ) {\displaystyle {\mathfrak {r}}=({\mathfrak {r}}\cap {\widetilde {\mathfrak {n}}}_{-})\oplus ({\mathfrak {r}}\cap {\widetilde {\mathfrak {n}}}_{+})} . In fact, it is a g ~ {\displaystyle {\widetilde {\mathfrak {g}}}} -module decomposition. Let

g = g ~ / r {\displaystyle {\mathfrak {g}}={\widetilde {\mathfrak {g}}}/{\mathfrak {r}}} .

Then it contains a copy of h {\displaystyle {\mathfrak {h}}} , which is identified with h {\displaystyle {\mathfrak {h}}} and

g = n + h n {\displaystyle {\mathfrak {g}}={\mathfrak {n}}_{+}\bigoplus {\mathfrak {h}}\bigoplus {\mathfrak {n}}_{-}}

where n + {\displaystyle {\mathfrak {n}}_{+}} (resp. n {\displaystyle {\mathfrak {n}}_{-}} ) are the subalgebras generated by the images of e i {\displaystyle e_{i}} 's (resp. the images of f i {\displaystyle f_{i}} 's).

One then shows: (1) the derived algebra [ g , g ] {\displaystyle [{\mathfrak {g}},{\mathfrak {g}}]} here is the same as g {\displaystyle {\mathfrak {g}}} in the lead, (2) it is finite-dimensional and semisimple and (3) [ g , g ] = g {\displaystyle [{\mathfrak {g}},{\mathfrak {g}}]={\mathfrak {g}}} .

References

  • Kac, Victor (1990). Infinite dimensional Lie algebras (3rd ed.). Cambridge University Press. ISBN 0-521-46693-8.
  • Humphreys, James E. (1972). Introduction to Lie Algebras and Representation Theory. Berlin, New York: Springer-Verlag. ISBN 978-0-387-90053-7.
  • Serre, Jean-Pierre (1966). Algèbres de Lie semi-simples complexes [Complex Semisimple Lie Algebras]. Translated by Jones, G. A. Benjamin. ISBN 978-3-540-67827-4.


  • v
  • t
  • e