Hautus lemma

In control theory and in particular when studying the properties of a linear time-invariant system in state space form, the Hautus lemma (after Malo L. J. Hautus), also commonly known as the Popov-Belevitch-Hautus test or PBH test,[1][2] can prove to be a powerful tool.

A special case of this result appeared first in 1963 in a paper by Elmer G. Gilbert,[1] and was later expanded to the current PHB test with contributions by Vasile M. Popov in 1966,[3][4] Vitold Belevitch in 1968,[5] and Malo Hautus in 1969,[5] who emphasized its applicability in proving results for linear time-invariant systems.

Statement

There exist multiple forms of the lemma:

Hautus Lemma for controllability

The Hautus lemma for controllability says that given a square matrix A M n ( ) {\displaystyle \mathbf {A} \in M_{n}(\Re )} and a B M n × m ( ) {\displaystyle \mathbf {B} \in M_{n\times m}(\Re )} the following are equivalent:

  1. The pair ( A , B ) {\displaystyle (\mathbf {A} ,\mathbf {B} )} is controllable
  2. For all λ C {\displaystyle \lambda \in \mathbb {C} } it holds that rank [ λ I A , B ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ,\mathbf {B} ]=n}
  3. For all λ C {\displaystyle \lambda \in \mathbb {C} } that are eigenvalues of A {\displaystyle \mathbf {A} } it holds that rank [ λ I A , B ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ,\mathbf {B} ]=n}

Hautus Lemma for stabilizability

The Hautus lemma for stabilizability says that given a square matrix A M n ( ) {\displaystyle \mathbf {A} \in M_{n}(\Re )} and a B M n × m ( ) {\displaystyle \mathbf {B} \in M_{n\times m}(\Re )} the following are equivalent:

  1. The pair ( A , B ) {\displaystyle (\mathbf {A} ,\mathbf {B} )} is stabilizable
  2. For all λ C {\displaystyle \lambda \in \mathbb {C} } that are eigenvalues of A {\displaystyle \mathbf {A} } and for which ( λ ) 0 {\displaystyle \Re (\lambda )\geq 0} it holds that rank [ λ I A , B ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ,\mathbf {B} ]=n}

Hautus Lemma for observability

The Hautus lemma for observability says that given a square matrix A M n ( ) {\displaystyle \mathbf {A} \in M_{n}(\Re )} and a C M m × n ( ) {\displaystyle \mathbf {C} \in M_{m\times n}(\Re )} the following are equivalent:

  1. The pair ( A , C ) {\displaystyle (\mathbf {A} ,\mathbf {C} )} is observable.
  2. For all λ C {\displaystyle \lambda \in \mathbb {C} } it holds that rank [ λ I A ; C ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ;\mathbf {C} ]=n}
  3. For all λ C {\displaystyle \lambda \in \mathbb {C} } that are eigenvalues of A {\displaystyle \mathbf {A} } it holds that rank [ λ I A ; C ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ;\mathbf {C} ]=n}

Hautus Lemma for detectability

The Hautus lemma for detectability says that given a square matrix A M n ( ) {\displaystyle \mathbf {A} \in M_{n}(\Re )} and a C M m × n ( ) {\displaystyle \mathbf {C} \in M_{m\times n}(\Re )} the following are equivalent:

  1. The pair ( A , C ) {\displaystyle (\mathbf {A} ,\mathbf {C} )} is detectable
  2. For all λ C {\displaystyle \lambda \in \mathbb {C} } that are eigenvalues of A {\displaystyle \mathbf {A} } and for which ( λ ) 0 {\displaystyle \Re (\lambda )\geq 0} it holds that rank [ λ I A ; C ] = n {\displaystyle \operatorname {rank} [\lambda \mathbf {I} -\mathbf {A} ;\mathbf {C} ]=n}

References

  • Sontag, Eduard D. (1998). Mathematical Control Theory: Deterministic Finite-Dimensional Systems. New York: Springer. ISBN 0-387-98489-5.
  • Zabczyk, Jerzy (1995). Mathematical Control Theory – An Introduction. Boston: Birkhauser. ISBN 3-7643-3645-5.

Notes

  1. ^ a b Hespanha, Joao (2018). Linear Systems Theory (Second ed.). Princeton University Press. ISBN 9780691179575.
  2. ^ Bernstein, Dennis S. (2018). Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas (Revised and expanded ed.). Princeton University Press. ISBN 9780691151205.
  3. ^ Popov, Vasile Mihai (1966). Hiperstabilitatea sistemelor automate [Hyperstability of Control Systems]. Editura Academiei Republicii Socialiste România.
  4. ^ Popov, V.M. (1973). Hyperstability of Control Systems. Berlin: Springer-Verlag.
  5. ^ a b Belevitch, V. (1968). Classical Network Theory. San Francisco: Holden–Day.