Einstein–Brillouin–Keller method

Semi-classical method for computing quantum eigenvalues

The Einstein–Brillouin–Keller (EBK) method is a semiclassical method (named after Albert Einstein, Léon Brillouin, and Joseph B. Keller) used to compute eigenvalues in quantum-mechanical systems. EBK quantization is an improvement from Bohr-Sommerfeld quantization which did not consider the caustic phase jumps at classical turning points.[1] This procedure is able to reproduce exactly the spectrum of the 3D harmonic oscillator, particle in a box, and even the relativistic fine structure of the hydrogen atom.[2]

In 1976–1977, Michael Berry and M. Tabor derived an extension to Gutzwiller trace formula for the density of states of an integrable system starting from EBK quantization.[3][4]

There have been a number of recent results on computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[5]

Procedure

Given a separable classical system defined by coordinates ( q i , p i ) ; i { 1 , 2 , , d } {\displaystyle (q_{i},p_{i});i\in \{1,2,\cdots ,d\}} , in which every pair ( q i , p i ) {\displaystyle (q_{i},p_{i})} describes a closed function or a periodic function in q i {\displaystyle q_{i}} , the EBK procedure involves quantizing the line integrals of p i {\displaystyle p_{i}} over the closed orbit of q i {\displaystyle q_{i}} :

I i = 1 2 π p i d q i = ( n i + μ i 4 + b i 2 ) {\displaystyle I_{i}={\frac {1}{2\pi }}\oint p_{i}dq_{i}=\hbar \left(n_{i}+{\frac {\mu _{i}}{4}}+{\frac {b_{i}}{2}}\right)}

where I i {\displaystyle I_{i}} is the action-angle coordinate, n i {\displaystyle n_{i}} is a positive integer, and μ i {\displaystyle \mu _{i}} and b i {\displaystyle b_{i}} are Maslov indexes. μ i {\displaystyle \mu _{i}} corresponds to the number of classical turning points in the trajectory of q i {\displaystyle q_{i}} (Dirichlet boundary condition), and b i {\displaystyle b_{i}} corresponds to the number of reflections with a hard wall (Neumann boundary condition).[6]

Examples

1D Harmonic oscillator

The Hamiltonian of a simple harmonic oscillator is given by

H = p 2 2 m + m ω 2 x 2 2 {\displaystyle H={\frac {p^{2}}{2m}}+{\frac {m\omega ^{2}x^{2}}{2}}}

where p {\displaystyle p} is the linear momentum and x {\displaystyle x} the position coordinate. The action variable is given by

I = 2 π 0 x 0 2 m E m 2 ω 2 x 2 d x {\displaystyle I={\frac {2}{\pi }}\int _{0}^{x_{0}}{\sqrt {2mE-m^{2}\omega ^{2}x^{2}}}\mathrm {d} x}

where we have used that H = E {\displaystyle H=E} is the energy and that the closed trajectory is 4 times the trajectory from 0 to the turning point x 0 = 2 E / m ω 2 {\displaystyle x_{0}={\sqrt {2E/m\omega ^{2}}}} .

The integral turns out to be

E = I ω {\displaystyle E=I\omega } ,

which under EBK quantization there are two soft turning points in each orbit μ x = 2 {\displaystyle \mu _{x}=2} and b x = 0 {\displaystyle b_{x}=0} . Finally, that yields

E = ω ( n + 1 / 2 ) {\displaystyle E=\hbar \omega (n+1/2)} ,

which is the exact result for quantization of the quantum harmonic oscillator.

2D hydrogen atom

The Hamiltonian for a non-relativistic electron (electric charge e {\displaystyle e} ) in a hydrogen atom is:

H = p r 2 2 m + p φ 2 2 m r 2 e 2 4 π ϵ 0 r {\displaystyle H={\frac {p_{r}^{2}}{2m}}+{\frac {p_{\varphi }^{2}}{2mr^{2}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r}}}

where p r {\displaystyle p_{r}} is the canonical momentum to the radial distance r {\displaystyle r} , and p φ {\displaystyle p_{\varphi }} is the canonical momentum of the azimuthal angle φ {\displaystyle \varphi } . Take the action-angle coordinates:

I φ = constant = | L | {\displaystyle I_{\varphi }={\text{constant}}=|L|}

For the radial coordinate r {\displaystyle r} :

p r = 2 m E L 2 r 2 + e 2 4 π ϵ 0 r {\displaystyle p_{r}={\sqrt {2mE-{\frac {L^{2}}{r^{2}}}+{\frac {e^{2}}{4\pi \epsilon _{0}r}}}}}
I r = 1 π r 1 r 2 p r d r = m e 2 4 π ϵ 0 2 m E | L | {\displaystyle I_{r}={\frac {1}{\pi }}\int _{r_{1}}^{r_{2}}p_{r}dr={\frac {me^{2}}{4\pi \epsilon _{0}{\sqrt {-2mE}}}}-|L|}

where we are integrating between the two classical turning points r 1 , r 2 {\displaystyle r_{1},r_{2}} ( μ r = 2 {\displaystyle \mu _{r}=2} )

E = m e 4 32 π 2 ϵ 0 2 ( I r + I φ ) 2 {\displaystyle E=-{\frac {me^{4}}{32\pi ^{2}\epsilon _{0}^{2}(I_{r}+I_{\varphi })^{2}}}}

Using EBK quantization b r = μ φ = b φ = 0 , n φ = m {\displaystyle b_{r}=\mu _{\varphi }=b_{\varphi }=0,n_{\varphi }=m}  :

I φ = m ; m = 0 , 1 , 2 , {\displaystyle I_{\varphi }=\hbar m\quad ;\quad m=0,1,2,\cdots }
I r = ( n r + 1 / 2 ) ; n r = 0 , 1 , 2 , {\displaystyle I_{r}=\hbar (n_{r}+1/2)\quad ;\quad n_{r}=0,1,2,\cdots }
E = m e 4 32 π 2 ϵ 0 2 2 ( n r + m + 1 / 2 ) 2 {\displaystyle E=-{\frac {me^{4}}{32\pi ^{2}\epsilon _{0}^{2}\hbar ^{2}(n_{r}+m+1/2)^{2}}}}

and by making n = n r + m + 1 {\displaystyle n=n_{r}+m+1} the spectrum of the 2D hydrogen atom [7] is recovered :

E n = m e 4 32 π 2 ϵ 0 2 2 ( n 1 / 2 ) 2 ; n = 1 , 2 , 3 , {\displaystyle E_{n}=-{\frac {me^{4}}{32\pi ^{2}\epsilon _{0}^{2}\hbar ^{2}(n-1/2)^{2}}}\quad ;\quad n=1,2,3,\cdots }

Note that for this case I φ = | L | {\displaystyle I_{\varphi }=|L|} almost coincides with the usual quantization of the angular momentum operator on the plane L z {\displaystyle L_{z}} . For the 3D case, the EBK method for the total angular momentum is equivalent to the Langer correction.

See also

  • iconPhysics portal

References

  • Duncan, Anthony; Janssen, Michel (2019). "5. Guiding Principles". Constructing quantum mechanics (First ed.). Oxford, United Kingdom ; New York, NY: Oxford University Press. ISBN 978-0-19-884547-8.
  1. ^ Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos" (PDF). Physics Today. 58 (8): 37–43. Bibcode:2005PhT....58h..37S. doi:10.1063/1.2062917.
  2. ^ Curtis, L.G.; Ellis, D.G. (2004). "Use of the Einstein–Brillouin–Keller action quantization". American Journal of Physics. 72 (12): 1521–1523. Bibcode:2004AmJPh..72.1521C. doi:10.1119/1.1768554.
  3. ^ Berry, M.V.; Tabor, M. (1976). "Closed orbits and the regular bound spectrum". Proceedings of the Royal Society A. 349 (1656): 101–123. Bibcode:1976RSPSA.349..101B. doi:10.1098/rspa.1976.0062. S2CID 122040979.
  4. ^ Berry, M.V.; Tabor, M. (1977). "Calculating the bound spectrum by path summation in action-angle variables". Journal of Physics A. 10 (3): 371. Bibcode:1977JPhA...10..371B. doi:10.1088/0305-4470/10/3/009.
  5. ^ Tannenbaum, E.D.; Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A. 105 (12): 2801–2813. doi:10.1021/jp004371d.
  6. ^ Brack, M.; Bhaduri, R.K. (1997). Semiclassical Physics. Adison-Weasly Publishing.
  7. ^ Basu, P.K. (1997). Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Oxford University Press.