Disilyne

Disilyne
Structural formula of disilyne
Names
IUPAC name
Disilyne
Identifiers
CAS Number
  • 36835-58-2
3D model (JSmol)
  • Interactive image
ChemSpider
  • 16341537
PubChem CID
  • 71420045
CompTox Dashboard (EPA)
  • DTXSID101027153 Edit this at Wikidata
InChI
  • InChI=1S/H2Si2/c1-2/h1-2H
    Key: NWEREQWWNYLPTF-UHFFFAOYSA-N
  • [SiH]#[SiH]
Properties
Chemical formula
H2Si2
Molar mass 58.186 g·mol−1
Related compounds
Related compounds
Acetylene
methylacetylene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

Disilyne is a silicon hydride with the formula Si
2
H
2
. Several isomers are possible, but none are sufficiently stable to be of practical value. Substituted disilynes contain a formal silicon–silicon triple bond and as such are sometimes written R2Si2 (where R is a substituent group). They are the silicon analogues of alkynes.

The term silyne has two diverse meanings. Some chemists use it to refer to compounds containing a silicon–silicon triple bond,[1] by analogy to the carbon–carbon triple bond in alkynes, whereas others use the term to refer to compounds containing a silicon–carbon triple bond[2] by analogy to silene, which often refers to compounds containing silicon–carbon double bonds.[3] The term polysilyne can refer to the layer polymer (SiH)n or substituted derivatives.[1]

Substituted disilynes

The structure of the first disilyne characterised

The first substituted disilyne to be isolated and characterised by X-ray crystallography is one with an additional trisubstituted silicon group on each silicon of the disilyne core. The structure R 2 R Si Si Si SiR R 2 {\displaystyle {\ce {R'_2R''Si-Si#Si-SiR''R'_2}}} , where R {\displaystyle {\ce {R'}}} = HC(SiMe3)2 and R {\displaystyle {\ce {R''}}} = HCMe2, is an emerald green crystalline compound reported in 2004.[4]

It was prepared by the reduction of the related tetrabrominated precursor by potassium graphite (KC8). It is air- and moisture-sensitive but is a stable solid up to 128 °C.

The geometry of disilynes is unlike that of analogous carbon structures. Whereas substituted alkynes, such as H 3 C C C CH 3 {\displaystyle {\ce {H3C-C#C-CH3}}} , are linear, having a 180° bond angle at each end of the carbon–carbon triple bond, the Si Si Si Si {\displaystyle {\ce {Si-Si#Si-Si}}} chain is bent to 137° at each end. The four silicon atoms in the chain are however perfectly coplanar, with the first and fourth silicon atoms trans to one another. The central triple bond length is 206 pm, which is around 4% shorter than the typical bond-length of Si–Si double bonds (214 pm)) and the Si–Si single bonds are 237 pm. The colour is attributed to a weak π–π* transition.

Calculations show a bond order of 2.6. An alternative calculation of the bond order by a different group describes the bonding as essentially due to only two electron pairs, with the third pair in a non-bonding orbital.[5][6][7] Reaction of this compound with phenylacetylene produced a 1,2 disilabenzene.[8] Other workers[9] have also reported another related compound which contains a hexasila-3-yne chain:

R3Si(SiR3)SiMeSi2SiMe(SiR3)SiR3
where Me = methyl and R = t-butyl

In this compound, the Si–Si triple bond length was calculated as 207 pm.

Heavier group 14 analogues

Triple bonded compounds of the heavier members of group 14 have also been prepared; lead, [10] and tin[11] and germanium (digermyne)[12] The cores of the disilyne, digermyne, distannyne, and diplumbyne have similarly bent geometries. These findings are generally consistent with the absence of conventional triple bonds.

See also

References

  1. ^ a b Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN 0-12-352651-5
  2. ^ Karni, Miriam; Apeloig, Yitzhak (2002). "The quest for a stable silyne, RSi ≡ CR′. The effect of bulky substituents". Silicon Chemistry. 1: 59–65. doi:10.1023/A:1016091614005. S2CID 97098444.
  3. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. ^ Sekiguchi, Akira; Kinjo, Rei; Ichinohe, Masaaki (September 2004). "A Stable Compound Containing a Silicon-Silicon Triple Bond". Science. 305 (5691): 1755–1757. Bibcode:2004Sci...305.1755S. doi:10.1126/science.1102209. PMID 15375262. S2CID 24416825.
  5. ^ Pignedoli, Carlo A.; Curioni, Alessandro; Andreoni, Wanda (2005). "Disproving a Silicon Analog of an Alkyne with the Aid of Topological Analyses of the Electronic Structure and Ab Initio Molecular Dynamics Calculations". ChemPhysChem. 6 (9): 1795–1799. doi:10.1002/cphc.200500064. PMID 16144004.
  6. ^ Frenking., Gernot; Krapp, Andreas; Nagase, Shigeru; Takagi, Nozomi; Sekiguchi, Akira (2006). "Comment on Disproving a Silicon Analog of an Alkyne with the Aid of Topological Analyses of the Electronic Structure and Ab Initio Molecular Dynamics Calculations". ChemPhysChem. 7 (4): 799–800. doi:10.1002/cphc.200500689. PMID 16596606.
  7. ^ Pignedoli, Carlo A.; Curioni, Alessandro; Andreoni, Wanda (2006). "Reply to Comment on Disproving a Silicon Analog of an Alkyne with the Aid of Topological Analyses of the Electronic Structure and Ab Initio Molecular Dynamics Calculations". ChemPhysChem. 7 (4): 801–802. doi:10.1002/cphc.200600025.
  8. ^ Kinjo, Rei; Ichinohe, Masaaki; Sekiguchi, Akira; Takagi, Nozomi; Sumimoto, Michinori; Nagase, Shigeru (2007). "Reactivity of a Disilyne RSi≡SiR (R = SiiPr[CH(SiMe3)2]2) toward π-Bonds: Stereospecific Addition and a New Route to an Isolable 1,2-Disilabenzene". Journal of the American Chemical Society. 129 (25): 7766–7767. doi:10.1021/ja072759h. PMID 17542592.
  9. ^ Wiberg, Nils; Vasisht, Sham Kumar; Fischer, Gerd; Mayer, Peter (2004). "Disilynes. III [1] A Relatively Stable Disilyne RSiSiR (R = SiMe(SitBu3)2)". Zeitschrift für anorganische und allgemeine Chemie. 630 (12): 1823–1828. doi:10.1002/zaac.200400177.
  10. ^ Pu, L.; Twamley, B.; Power, P. P. (2000). "Synthesis and Characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): A Stable Heavier Group 14 Element Analogue of an Alkyne". J. Am. Chem. Soc. 122 (14): 3524–3525. doi:10.1021/ja993346m.
  11. ^ Phillips, A. D.; Wright, R. J.; Olmstead, M.; Power, P. P. (2002). "Synthesis and Characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pri2): A Tin Analogue of an Alkyne". J. Am. Chem. Soc. 124 (21): 5930–1. doi:10.1021/ja0257164. PMID 12022812.
  12. ^ Stender, Matthias; Phillips, Andrew D.; Wright, Robert J.; Power, Philip P. (2002). "Synthesis and Characterization of a Digermanium Analogue of an Alkyne". Angew. Chem. Int. Ed. 41 (10): 1785–7. doi:10.1002/1521-3757(20020517)114:10<1863::AID-ANGE1863>3.0.CO;2-I. PMID 19750717.
  • v
  • t
  • e
Alkali metal
(Group 1) hydridesAlkaline
(Group 2)
earth hydrides
Monohydrides
Dihydrides
  • BeH2
  • MgH2
  • CaH2
  • SrH2
  • BaH2
Group 13
hydrides
Boranes
  • BH3
  • BH
  • B2H6
  • B2H2
  • B2H4
  • B4H10
  • B5H9
  • B5H11
  • B6H10
  • B6H12
  • B10H14
  • B18H22
Alanes
  • AlH3
  • Al2H6
Gallanes
  • GaH3
  • Ga2H6
Indiganes
  • InH3
  • In2H6
Thallanes
  • TlH3
  • Tl2H6
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
  • CH
  • CH2
  • CH3
  • C2H
Silanes
  • SiH4
  • Si2H6
  • Si3H8
  • Si4H10
  • Si5H12
  • Si6H14
  • Si7H16
  • Si8H18
  • Si9H20
  • Si10H22
  • more...
Silenes
  • Si2H4
Silynes
Germanes
  • GeH4
  • Ge2H6
  • Ge3H8
  • Ge4H10
  • Ge5H12
Stannanes
  • SnH4
  • Sn2H6
Plumbanes
  • PbH4
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
  • NH3
  • N2H4
  • N3H5
  • N4H6
  • N5H7
  • N6H8
  • N7H9
  • N8H10
  • N9H11
  • N10H12
  • more...
Azenes
  • N2H2
  • N3H3
  • N4H4
Phosphanes
  • PH3
  • P2H4
  • P3H5
  • P4H6
  • P5H7
  • P6H8
  • P7H9
  • P8H10
  • P9H11
  • P10H12
  • more...
Phosphenes
  • P2H2
  • P3H3
  • P4H4
Arsanes
  • AsH3
  • As2H4
Stibanes
  • SbH3
Bismuthanes
  • BiH3
Moscovanes
  • McH3 (predicted)
  • HN3
  • NH
  • HN5
  • NH5 (?)
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    • H2S
    • H2S2
    • H2S3
    • H2S4
    • H2S5
    • H2S6
    • H2S7
    • H2S8
    • H2S9
    • H2S10
    • more...
    Selanes
    • H2Se
    • H2Se2
    Tellanes
    • H2Te
    • H2Te2
    Polanes
    • PoH2
    Livermoranes
    • LvH2 (predicted)
    • HO
    • HO2
    • HO3
    • H2O+–O (?)
    • HS
    • HDO
    • D2O
    • T2O
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition metal hydrides
    • ScH2
    • YH2
    • YH3
    • YH6
    • YH9
    • LuH2
    • LuH3
    • TiH2
    • TiH4
    • ZrH2
    • ZrH4
    • HfH2
    • HfH4
    • VH
    • VH2
    • NbH
    • NbH2
    • TaH
    • TaH2
    • CrH
    • CrH2
    • CrHx
    • FeH
    • FeH2
    • FeH5
    • CoH2
    • RhH2
    • IrH3
    • NiH
    • PdHx (x < 1)
    • PtHx (x< 1)
    • DsH2 (predicted)
    • CuH
    • RgH (predicted)
    • ZnH2
    • CdH2
    • HgH
    • Hg2H2
    • HgH2
    • CnH2 (predicted)
    Lanthanide hydrides
    • LaH2
    • LaH3
    • LaH10
    • CeH2
    • CeH3
    • PrH2
    • PrH3
    • NdH2
    • NdH3
    • SmH2
    • SmH3
    • EuH2
    • GdH2
    • GdH3
    • TbH2
    • TbH3
    • DyH2
    • DyH3
    • HoH2
    • HoH3
    • ErH2
    • ErH3
    • TmH2
    • TmH3
    • YbH2
    • LuH2
    • LuH3
    Actinide hydrides
    • AcH2
    • ThH2
    • ThH4
    • Th4H15
    • PaH3
    • UH3
    • UH4
    • NpH2
    • NpH3
    • PuH2
    • PuH3
    • AmH2
    • AmH3
    • CmH2
    • BkH2
    • BkH3
    • CfH2
    • CfH3
    Exotic matter hydrides